
 Journal of Fluids and Structures  (1997)  11 ,  535 – 547

 ADAPTIVE MODAL VIBRATION CONTROL OF A
 FLUID-CONVEYING CANTILEVER PIPE
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 Keelung , Taiwan  2 0 2 2 4 , Republic of China

 (Received 1 August 1996 and in revised form 24 March 1997)

 A model reference adaptive control approach ,  designed in the modal space ,  is applied for
 flutter control of a cantilever pipe conveying fluid .  The control input is provided by a pair
 of surface-mounted piezoelectric actuators which are driven 180 8  out of phase to provide
 an equivalent bending moment acting on the controlled system .  Comparison of perfor-
 mance of the model reference adaptive control with that of the optimal independent modal
 space control reveals that the former is more robust than the latter in terms of flow speed
 variations ,  which are unknown in the control system designed ;  that is ,  the adaptive
 approach can tolerate a larger range of flow speed uncertainties without resulting in an
 unstable control system ,  so that successful flutter suppression of the fluid-conveying
 cantilever pipe with high flow speed can be achieved .

 ÷   1997 Academic Press Limited

 1 .  INTRODUCTION

 It has been well known that pipes supported at both ends will buckle when the flow
 velocity exceeds the critical velocity (Housner 1952 ;  Holmes 1978) .  For cantilever
 tubes ,  flutter instability was observed once the flow velocity exceeds the critical velocity
 (Gregory & Paı ̈ doussis 1966 ;  Paı ̈ doussis 1970) .  In a review article ,  Paı ̈ doussis & Li
 (1993) demonstrated that analysis of pipes conveying fluid has become a new paradigm
 in dynamics .  Hundreds of papers have been written on the subject and the literature on
 this topic is constantly expanding .

 Despite the intense research ef forts towards assessing the dynamical characteristics
 of pipes conveying fluid ,  the literature on vibration control of fluid-conveying pipes is
 quite limited .  The study is important to ensure operation accuracy or to prevent
 catastrophic failure due to excessive vibrations of systems in service ,  such as oil
 pipelines ,  jet-cutting nozzles ,  and heat-exchanger tubes ,  etc .  Tani & Sudani (1992)
 reported a sub-optimal control law for vibration suppression of fluid-conveying tubes
 by using motor-controlled tendons .  Sugiyama  et al .  (1992) studied a vibration
 suppression technique by using an electronic valve to control the internal flowing fluid
 for a cantilever pipe with sub-critical flow speeds .  The valve was used to adjust the
 speed of the flowing fluid through a feedback on – of f control .  Yau  et al .  (1992)
 employed quantitative feedback theory to actively control the excessive vibration of a
 constrained flexible pipe conveying fluid by using piezoelectric actuators .  The control
 moment was related to the input voltage with an assumed constant .  The ef fects of
 actuator dynamics were assumed negligible .  The analysis was conducted by using a
 two-degree-of-freedom model .  Kangaspuoskari  et al .  (1993) examined the ef fect of
 feedback control on critical velocity of cantilevered pipes aspirating fluid .  Direct
 feedback control using displacement ,  velocity ,  or acceleration sensors was presented .
 Since the control design is of the non-collocated type ,  the system may be unstable
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 due to control spillover problems .  Recently ,  Lin & Chu (1996) applied the optimal
 independent modal space control (IMSC) approach for active flutter suppression of a
 cantilever pipe conveying fluid .  The IMSC approach has been demonstrated to have
 advantages over the design in physical space ,  in that it demands far less computer
 storage ,  reduces the computational ef fort significantly ,  and allows a larger choice of
 control algorithms ,  including nonlinear control (Meriovitch  et al .  1983) .  The control
 system designed cannot lose stability due to control spillover from the modes
 controlled to those uncontrolled by using the IMSC approach .  However ,  it has been
 observed that while the control is optimal for a particular flow speed ,  the closed-loop
 system may become unstable for a small variation of flow speed unknown to the
 control system .

 There has been a considerable amount of interest recently in the application of
 piezoelectric actuators for sensing and vibration control of flexible structures .  Do ̈  kmeci
 (1983a ,  b ,  c) surveyed dynamic applications of piezoelectric crystals in view of
 fundamental ,  theoretical and experimental studies .  Rao & Sunar (1994) reported the
 recent research trends in using piezoelectricity in sensing and control of flexible
 structures .  This survey covered a broad range of concerns in the fleld ,  including
 sensing ,  actuation ,  sensitivity and optimization ,  nonlinear ef fects ,  and thermo-
 piezoelectricity .  Crawley (1994) provided an overview and assessment of intelligent
 structures for aerospace applications .  The integration of sensing ,  actuation ,  control
 logic ,  signal conditioning ,  and power amplification electronics was discussed .

 In the work reported here ,  a model reference adaptive control approach designed in
 the modal space is presented .  A reference model with asymptotic stability is used to
 formulate the control design .  A feedback gain matrix is adjusted adaptively ,  which is
 obtained by solving a set of nonlinear matrix dif ferential equations of size 2  3  2 for
 each mode controlled ,  disregarding how large the model order is .  This is in contrast
 with the design in physical space ,  which requires solution of full model order nonlinear
 equations ,  and may become impractical for higher order systems .  Performance of the
 adaptive control is compared with that of the optimal independent modal space control
 to examine the robustness of the control system due to unknown variations of the flow
 speed .

 2 .  FINITE ELEMENT MODEL FORMULATION

 Figure 1 depicts the finite element model for the flow-induced vibration problem being
 considered .  Two piezoelectric actuators are bonded on top and bottom of the pipe ,
 respectively .  The fluid enters the left end of the tube and exits from the free end .  The
 governing equation of motion is given below ,  with the detailed formulation for the
 finite element structural matrices given in the appendix for completeness :

 MD ̈  ( t )  1  CD Ù  ( t )  1  KD ( t )  5  N T
 x r

 M f  ( t ) ,  (1)

 where  M ,   C ,  and  K  are the structural mass ,  damping ,  and stif fness matrices ,
 respectively ,  which include the contributions from the support pipe ,  the piezoelectric
 actuators ,  and the moving fluid ;   N T

 x r
   is the transpose of the derivative ,  with respect to  x ,

 of the shape functions evaluated at the right end of the actuators ,  i . e .   x r   in Figure 1 ;
 D ( t ) ,   D Ù  ( t ) and  D ̈  ( t ) denote displacement ,  velocity and acceleration vectors ,  respec-
 tively ;   M f  ( t ) is the control moment created due to the extension or contraction of the
 actuators which are driven 180 8  out of phase .  It is known that actuation to the
 substructure by the piezoelectric actuators when a voltage is applied is equivalent to
 the moment applied at its ends (Lin & Chu 1994) .
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 Figure 1 .  Finite element model of a fluid conveying cantilever pipe with surface mounted piezoelectric
 actuators .

 To facilitate the control formulation ,  equation (1) is recast to obtain an expression in
 state space

 X Ù  ( t )  5  AX ( t )  1  B V  ( t ) ,  (2a)
 where

 X ( t )  5 H D Ù  ( t )
 D ( t )

 J ,  (2b)

 A  5 F 2 M 2 1 C
 I

 2 M 2 1 K
 0

 G ,  B  5 H M 2 1 N T
 x r

 0
 J C m  ,  (2c , d)

 in which  V  ( t ) is active control input voltage and  C m   is a constant to relate the
 equivalent moment induced from the voltage input .  The relationship between the
 applied voltage and the control moment can be written as

 M f  ( t )  5
 4   E A d [( r o  1  t 1 )

 3  2  r 3
 o ]  sin  w

 3(1  1     ) t 1
 V  ( t )  5  C m V  ( t ) ,  (3a)

 where

    5
 E P I P

 E A I A
 ,  (3b)

 in which  E P I P   and  E A I A   are the bending rigidity of the pipe and of the actuator pair ,
 respectively ;   d  is the electric strain constant ;  and  t 1  is the thickness of the piezoelectric
 actuator .  A detailed derivation of equation (3) is given in Lin & Chu (1994) .
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 Equation (2) represents a set of 2 n  first-order dif ferential equations .  To decouple
 equation (2) ,  the concept of biorthogonality between the right and left eigenvectors can
 be applied (Meirovitch 1980 ,  1992) .  By using the following linear transformation ,  the
 original state vector  X ( t ) can be transformed to the modal coordinate  q ( t )

 X ( t )  5  Rq ( t ) ,  (4)

 in which  R  is the modal matrix containing the real and imaginary parts of the right
 eigenvectors (Meirovitch & Ghosh 1987) .  The following set of decoupled modal
 equations can be obtained by using the property of biorthogonality :

 q Ù  5  L q ( t )  1  Q u ( t ) ,  (5a)
 where

 Q u ( t )  5  L T B V  ( t ) ,  (5b)

 in which  L  is the modal matrix containing the real and imaginary parts of the left
 eigenvectors .  The modal matrices  L  and  R  are normalized such that  L T R  5  I .  Equation
 (5) consists of  n  pairs of decoupled modal equations of the form

 q Ù  s ( t )  5  L s q s ( t )  1  Q u s
 ( t ) ,  s  5  1 ,  2 ,  .  .  .  ,  n ,  (6)

 where
 q s ( t )  5  [ q 2 s 2 1 ( t ) ,  q 2 s ( t )] T ,

 L s  5 F s s

 v s

 2 v s

 s s
 G ,  and  Q u s

 ( t )  5  [ Q u 2 s 2 1  ,  Q u 2 s
 ] T ,  s  5  1 ,  2 ,  .  .  .  ,  n .  (7)

 In the following sections both the adaptive and the optimal IMSC methods are
 discussed .  The modal force vector  Q u s

 ( t ) is made to be a function of the  s th mode only ,
 and hence complete decoupling of the modal coordinates is achieved .  This is the
 essence of the IMSC method .  Note that the modal control design requires estimates of
 the modal state  q s ( t ) .  For measurements with low noise-to-signal ratios ,  a Luenberger
 observer can be used ;  and for high noise-to-signal ratios ,  a Kalman – Bucy filter can be
 applied .  The observation spillover can be alleviated by prefiltering the sensor signals to
 remove the contribution of the uncontrolled modes .  Meirovitch & O ̈  z (1980) showed
 that observation spillover instability can be eliminated by using an appropriate order
 for the modal state observer .

 3 .  MODAL MODEL REFERENCE ADAPTIVE CONTROL

 Adaptive modal vibration control is considered in this work .  The modal plant to be
 controlled adaptively can be described as a linear time-invariant system of order two
 with unknown parameters and accessible modal states

 q Ù  s ( t )  5  L s q s ( t )  1  B s Q u s
 ( t ) ,  s  5  1 ,  2 ,  .  .  .  ,  k ,  (8)

 where  k  is number of modes to be controlled .  In general ,  both  L s   and  B s   are assumed
 to be unknown constant matrices .  However ,   B s   can be regarded as known and is an
 identity matrix in the present analysis ,  as can be seen from equations (6) and (8) .  The
 reference model used in the adaptive process can be described by the dif ferential
 equation

 q Ù  m s
 ( t )  5  L m s

 q m s
 ( t )  1  B m s

 r s ( t ) ,  s  5  1 ,  2 ,  .  .  .  ,  k ,  (9)

 where  L m s
   is a 2  3  2 asymptotically stable matrix ,   B m s

   is a 2  3  2 matrix ,  and  r s ( t ) is a
 bounded reference input .  The matrix  B m s

   can be chosen as

 B m s
 5  B s J s * ,  s  5  1 ,  2 ,  .  .  .  ,  k ,  (10)
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 in which  J s * is a known constant matrix .  The modal control input to the plant can then
 be generated using the following feedback control law (Narendra & Annaswamy 1989) :

 Q u s
 ( t )  5  u s ( t ) q s ( t )  1  J s * r s ( t ) ,  s  5  1 ,  2 ,  .  .  .  ,  k ,  (11)

 where the feedback matrix  u s ( t ) is adjusted adaptively .  A constant matrix  u s * is
 determined using the following relationship :

 L s  1  B s u s *  5  L m s
 ,  s  5  1 ,  2 ,  .  .  .  ,  k .  (12)

 The error dif ferential equations can thus be written as

 e Ù s ( t )  5  L m s
 e s ( t )  1  B s [ u s ( t )  2  u s *] q s ( t ) ,  s  5  1 ,  2 ,  .  .  .  ,  k ,  (13a)

 where
 e s ( t )  5  q s ( t )  2  q m s

 ( t ) ,  s  5  1 ,  2 ,  .  .  .  ,  k .  (13b)

 A Lyapunov function for the present system can be expressed as

 V s ( e s  ,  F s )  5  e T
 s  P s e s  1  Tr  [ F T

 s  G 2 1
 s  F s ] ,  (14a)

 in which  P s   and the adaptive gain  G s   are symmetric positive-definite matrices ,  and

 F s ( t )  5  u s ( t )  2  u s * .  (14b)

 The adaptive gain matrix can be expressed as

 u Ù  s ( t )  5  F Ù  s ( t )  5  2 G s B
 T
 s  P s e s q

 T
 s  .  (15)

 Dif ferentiating equation (14) leads to

 V ~  s ( e s  ,  F s )  5  2 e T
 s  Q 0 s

 e s  #  0 ,  (16a)

 which indicates that energy is dissipating ,  and

 2 Q 0 s
 5  L T

 m s
 P s  1  P s L m s

 .  (16b)

 Note that in the present analysis the initial conditions of the reference model are set
 to zero and the tracking force vector  r s ( t ) is null ;  that is ,  the control is of the regular
 type .  The states of the reference model will then be identically zero .  The control law as
 shown in equation (15) assures that

 lim
 t 5 ̀

 [ q s ( t )  2  q m s
 ( t )]  5  0 .  (17)

 Therefore ,  the states of the plant will be adaptively regulated to zero as time unfolds .

 4 .  OPTIMAL INDEPENDENT MODAL SPACE CONTROL

 The modal cost function for each mode controlled is defined as

 J s  5 E ̀

 0
 h q T

 s  ( t ) q s ( t )  1  Q T
 u s

 ( t ) E s Q u s
 ( t ) j  d t ,  s  5  1 ,  2 ,  .  .  .  ,  k .  (18)

 It has been shown by Lin & Chu (1995) that if the weighting matrix  E s   is not properly
 chosen ,  as in Meirovitch & Baruh (1981) and Meirovitch & Ghosh (1987) ,  the
 closed-loop system may lead to instability ,  depending on how the complex eigenvectors
 are normalized .  The use of a diagonal weighting matrix with identical elements
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 alleviates such problems and the associated Riccati matrix for optimal control action
 becomes

 S s  5 F S #  s

 0
 0
 S #  s
 G ,  s  5  1 ,  2 ,  .  .  .  ,  n ,  (19)

 where the closed form solution can be shown to be

 S #  s  5  s s E s 1 1  1  4 E s 1 1 ( E s 1 1 s  2
 s  1  1)  ,  s  5  1 ,  2 ,  .  .  .  ,  k ,  (20)

 in which  E s 1 1  is the diagonal element of the weighting matrix  E s  .  In contrast with the
 adaptive control input shown in equation (11) ,  the optimal independent modal space
 control leads to a control input law (Lin & Chu 1995) :

 F Q u 2 s 2 1
 ( t )

 Q u 2 s
 ( t )

 G  5 F S #  s  / E 1 1

 0
 0

 S #  s  / E s 1 1
 G F q 2 s 2 1 ( t )

 q 2 s ( t )
 G ,  s  5  1 ,  2 ,  .  .  .  ,  n .  (21)

 5 .  SIMULATION RESULTS

 The numerical data for this simulation study ,  as used in the work by Lin & Chu (1996)
 are :  (a) for the pipe :  Young’s modulus 68 ? 9  GPa ,  length 10  m ,  mass per unit length
 0 ? 342  kg / m ,  pipe diameter 0 ? 0254  m ,  and wall thickness 0 ? 00165  m ;  (b) for the actuator :
 Young’s modulus 45  GPa ,  length 1 ? 25  m ,  thickness 0 ? 0005  m ,  angle  w  5  85 8 ,  piezo-
 electric constant  2 260  3  10 2 1 2  m / volt ,  and mass density 7600  kg / m 3 .  The mass per unit
 length of the fluid is 0 ? 0858  kg / m .  The initial conditions of the adaptive feedback gain
 matrix  u s ( t ) are taken to be null .  A total of eight elements are used to describe the
 model dynamics .  Performance of the adaptive control system for a cantilever pipe
 conveying fluid with flow speed 1 ? 1 y  c r   is illustrated in Figure 2 ,  where  y  c r   is the critical
 flow speed to cause flutter instability in the second mode .  Since the second mode
 dominates the dynamic response ,  it is targeted as the mode to be controlled .  The pipe
 was displaced 0 ? 01  m initially at the free end .  The ef fect of the adaptive gain matrix  G s

 on system response is clearly demonstrated in Figure 2 .  For the case of gain
 G s  5  50  000 I ,  vibration of the pipe is virtually eliminated after  t  / τ  5  12 ,  where  τ   is the
 traveling time of a fluid particle from one end of the pipe to the other ,  whereas the
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 Figure 2 .  Calculated vertical tip responses for various adaptive gains with flow speed  y  5  1 ? 1 y  c r :  (——) ,
 uncontrolled ;  ( –  –  – ) ,   G s  5  10  000 I ;  ( ?  ?  ? ) ,   G s  5  20  000 I ;  (—  ?  —) ,   G s  5  50  000 I .
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 Figure 3 .  Calculated active control input voltages for various adaptive gains with flow speed  y  5  1 ? 1 y  c r :
 ( –  –  – ) ,  G s  3  10  000 I ;  ( ?  ?  ? ) ,   G s  5  20  000 I ;  (—  ?  —) ,   G s  5  50  000 I .

 uncontrolled system exhibits flutter instability .  The associated active control input
 voltages are shown in Figure 3 ,  which indicates that only a small amount of input
 voltage is required to suppress excessive vibration of the pipe for the present analysis
 case .  If the flow speed ,  initial disturbances ,  or the adaptive gain matrix  G s   are larger ,
 the control input voltage will become higher accordingly .

 Note that the control input is designed to control the second mode .  However ,  control
 spillover from the mode controlled to the modes uncontrolled exists when discrete
 actuators are used .  The spillover ef fect is accounted for by solving equation (5b) to
 obtain  V  ( t ) after the modal inputs ,   Q u s

 ( t ) ,  is synthesized from the control design ,  and
 the physical control moment can then be obtained from equation (3a) ,  which is used in
 equation (1) to compute the system responses .  An alternative way to account for the
 spillover ef fect is to compute the modal forces for those modes uncontrolled and solve
 equation (5a) for the modal responses .  The physical response can then be obtained
 from equation (4) .  The two approaches yield identical results .  For the present analysis ,
 the control spillover ef fect was found to be insignificant .

 Figure 4 shows the performance of the optimal IMSC system for various flow speeds .
 The control system is designed for the critical flow speed .  Therefore ,  the control system
 reacts without knowing the speed variations .  For flow speeds less than the critical one ,
 vibration of the pipe is suppressed rapidly ,  since the uncontrolled pipe vibrates less
 violently than that for which the control system was originally designed .  For flow
 speeds above 1 ? 2 y  c r ,  the system vibrates so violently and its dynamic behavior has
 deviated from the one designed so much that the control system is unable to regulate
 the pipe vibration to the equilibrium state .  The associated active control input voltages
 are shown in Figure 5 .  Performance of the adaptive independent modal space control
 for various flow speeds is shown in Figure 6 .  Since the control law of the adaptive
 scheme is dif ferent from that of the previous optimal IMSC approach ,  the adaptive gain
 was adjusted so that the controlled system responses are as close as possible between
 the two approaches for the critical flow speed .  As can be seen in Figure 6 ,  even at the
 high flow speed of  y  5  1 ? 5 y  c r ,  the adaptive control system is still capable of regulating
 excessive vibration of the fluid-conveying pipe back to the equilibrium state .  The
 corresponding active control input voltages are illustrated in Figure 7 .  Note that for
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 Figure 4 .  Calculated vertical tip responses with the use of the optimal IMSC approach ;  system designed
 for the critical flow speed and  E s  5  0 ? 5 I ;  (——) ,   y  5  0 ? 8 y  c r ;  ( –  –  – ) ,  y  5  y  c r ;  ( ?  ?  ? ) ,  y  5  1 ? 1 y  c r ;  (—  ?  —) ,

 y  5  1 ? 2 y  c r  .

 the case of  y  5  1 ? 5 y  c r   the peak control voltage is close to the coercive field of the
 actuators ,  and hence further increase of flow speed ,  which demands higher control
 input ,  is not recommended for the present control configuration .

 It is apparent that the adaptive IMSC scheme has the ability to tolerate larger
 variations of flow speeds ,  not known to the control system ,  than that of the optimal
 IMSC approach ,  at the expense of the need to solve the matrix equation (15) in real
 time .  However ,  the matrix equation is only of size 2  3  2 for each mode controlled in
 the present modal design approach ,  disregarding how large the model order is .
 Therefore ,  real-time computing is feasible to carry out the control design .  Note that if
 the control system knows the flow speed exactly and is specifically designed for that
 speed ,  the optimal IMSC approach performs the best ,  as its name implies .

 Figure 8 shows the ef fect of the initial conditions of the adaptive feedback gain
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 Figure 5 .  Calculated active control input voltages with the use of the optimal IMSC approach ;  system
 designed for the critical flow speed and  E s  5  0 ? 5 I .  (——) ,   y  5  0 ? 8 y  c r ;  ( –  –  – ) ,  y  5  y  c r ;  ( ?  ?  ? ) ,  y  5  1 ? 1 y  c r ;

 (—  ?  —) ,  y  5  1 ? 2 y  c r .
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 Figure 6 .  Calculated vertical tip responses with the use of the adaptive IMSC approach ;  system designed
 for the critical flow speed and  G s  5  20  000 I .  (——) ,   y  5  0 ? 8 y  c t ;  ( –  –  – ) ,   y  5  y  c r ;  ( ?  ?  ? ) ,   y  5  1 ? 2 y  c r ;  (—  ?  —) ,

 y  5  1 ? 4 y  c r ;   ( $  $  $ ) ,   y  5  1 ? 5 y  c r .

 matrix  u s ( t ) on the dynamic response of the pipe system .  The associated control input
 voltages are illustrated in Figure 9 .  As can be seen ,  the system response becomes more
 violent in the start-up when  u s (0) is higher .  In this analysis ,  the limit of the control
 input is set to  Ú 500 volts so as not to exceed the field capacities of the actuators and
 the power amplification circuits .  The operation range can be increased if better
 actuators and higher capacity of amplifiers are used .  For the case of  u s (0)  5  20 I ,  the
 control input saturates and the dynamic response at the pipe tip can be found to be
 more than four times the initial displacement disturbance magnitude at start-up .  The
 adaptive controller is still capable of regulating the system back to the equilibrium
 position under such a situation .  However ,  as noted by an anonymous reviewer of this
 work ,  further increase of  u s (0) will make the saturation problem more severe ,  which
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 Figure 7 .  Calculated active control input voltages with the use of the adaptive IMSC approach ;  system
 designed for the critical flow speed and  G s  5  20  000 I .  (——) ,   y  5  0 ? 8 y  c r ;  ( –  –  – ) ,  y  5  y  c r ;  ( ?  ?  ? ) ,  y  5  1 ? 2 y  c r ;
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 Y . -K .  TSAI AND Y . -H LIN 544

20

0.02

–0.05
0

t/τ

T
ip

 d
is

pl
ac

em
en

t 
(m

)

–0.01

0.01

0

–0.02

–0.03

4 8 12 16

–0.04

 Figure 8 .  Calculated vertical tip responses at the critical flow speed with the use of the adaptive IMSC
 approach ,   G s  5  20  000 I .  (——) ,   u s (0)  5  0 ;  (—  ?  —) ,   u s (0)  5  5 I ;  ( ?  ?  ? ) ,   u s (0)  5  10 I ;  ( –  –  – ) ,   u s (0)  5  20 I .

 ultimately leads to system instability because the control input is no longer supplied as
 designed .  Therefore a proper choice of  u s (0) is crucial to ensure stability and
 performance of the control system .

 6 .  CONCLUSIONS

 Active flutter suppression of a cantilever pipe conveying fluid with high flow speeds by
 using the model reference adaptive control approach in modal space has been
 presented in this work .  Only a set of matrix nonlinear dif ferential equations of size
 2  3  2 needs to be solved for each mode controlled by using the adaptive modal control
 scheme ,  whereas the ordinary adaptive control law in physical space requires the
 solution of a set of nonlinear equations with full model order ,  which may be prohibitive
 for higher order systems .  It has been shown that the adaptive modal control is more
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 Figure 9 .  Calculated active control input voltages at the critical flow speed with the use of the adaptive
 IMSC approach ,   G s  5  20  000 I .  (——) ,   u s (0)  5  0 ;  (—  ?  —) ,   u s (0)  5  5 I ;  ( ?  ?  ? ) ,   u s (0)  5  10 I ;  ( –  –  – ) ,   u s (0)  5  20 I .
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 robust than the optimal independent modal space control for flow speed variations
 unknown to the control system .  For the case analysed in this study it is demonstrated
 that the present control configuration is capable of suppressing flutter of the cantilever
 pipe conveying fluid ,  even with 50% variation of higher flow speed from that for which
 it was designed .

 It should be stressed that this paper mainly aimed to show that the proposed
 adaptive control scheme can work ,  rather than that it  will  work (and adapt) under all
 conceivable situations .  Adaptive schemes must be used with care ,  and their stability ,
 the ef fect of disturbances and noise ,  parameter uncertainty and so on ,  need to be
 tested – something that was not done here ,  but could be the subject of further studies
 into the usefulness of this control scheme under more realistic conditions .  Other future
 research areas include optimization of the actuator location ,  incorporation of a more
 accurate model for the fluid – structure interactions ,  and control approaches for pipes
 with rapid time-varying flow speeds .
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 APPENDIX

 The finite element method is applied in this research to study the feasibility of active
 vibration control of a flexible pipe conveying fluid .  The formulation of the finite
 element model for both the support pipe and the moving fluid is briefly described here .
 The transverse displacement of the pipe is described by the element nodal degrees of
 freedom with a set of interpolating functions (Cook 1976) ,

 w  5   N  h d j e ,  (A1)

 where   N    denotes 1  3  4 row vectors representing shape functions ,   h d j e  the element
 nodal degrees of freedom vector including transverse displacements and rotations ,  and

  N   5   N 1  N 2  N 3  N 4  ,  (A2)
 in which

 (A3)
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 where ‘ l ’ denotes the pipe element length ,  and ‘ x ’ the coordinate along the longitudinal
 direction of the pipe element .  The pipe element mass and stif fness matrices can be
 obtained using the standard finite element procedure (Cook 1976) :

 [ m ] e  5 E l

 0
  N   T r A  N   d x ,  ( A 4)

 [ k ] e  5 E l

 0
 EI  N   T

 xx  N  x x  d x ,  (A5)

 where  r   and  A  denote the mass per unit volume and the cross-section of the pipe
 element ,  respectively ;   EI  is the bending rigidity .  The element mass and stif fness
 matrices of the piezoelectric actuators can be obtained similarly .

 The development of a finite element model for fluid moving on a flexible pipe is
 described below .  By denoting the coordinate of the fluid as  w 0  ( x ,  t ) and that of the
 support pipe as  w ( x ,  t ) and knowing that they are the same at the contact position ,  the
 time derivatives of  w 0  can be described as (Lin and Trethewey 1990)

 w ̈  0 ( x ,  t )  5  w x x x ~  2  1  2 w x t x ~  1  w x x ̈  1  w t t

 5  w x x y  2  1  2 w x t y  1  w x y ~  1  w t t  ,  (A6)

 in which a subscript denotes partial dif ferentiation ;   y    is the fluid flow velocity and its
 overdot denotes the acceleration .  From equation (A1) ,  the following relationship can
 be established

 (A7)
 w x x  5   N  x x h d j ,  w x t  5   N  x h d ~  j ,

 w x  5   N  x h d j ,  w t t  5   N  h d ̈  j .

 Equations (A6) and (A7) can be combined and integrated over the element span ,  by
 considering the virtual work done by the fluid inertia forces ,  to obtain the element
 mass ,  damping ,  and stif fness matrices for the fluid moving at a constant velocity as
 below (Chu & Lin 1995) :

 (A8)

 [ m f  ] e  5  m f E l

 0
  N   T   N   d x ,

 [ c f  ] e  5  2 m f y E l

 0
  N   T   N  x  d x  2  m f y   N   T   N  U x 5 l

 x 5 0
 ,

 [ k f  ] e  5  m f y  2 E l

 0
  N   T   N  x x  d x  2  m f y

 2  N   T   N  x U x 5 l

 x 5 0
 ,

 where  m f   is the mass per unit length of the fluid .  The last terms on the right-hand side
 of the damping and stif fness matrix expressions ,  which are not attributed to those
 described in equation (A6) ,  represent the inflow terms at  x  5  0 ,  and the outflow terms
 at  x  5  l ,  as the fluid enters the pipe element from one end and exits from the other to
 account for the fluid boundary conditions (McIver 1973) .  The above finite element
 matrices for the pipe ,  the actuators ,  and the moving fluid can be assembled to form the
 structural matrices for analysis .  Note that at the free end of the pipe ,  the outflow terms
 as described above need to be added to the structural matrices for correct formulation .


